179
Views
5
CrossRef citations to date
0
Altmetric
feature articles

Analysis and Modeling of a Novel Hybrid Solid–Liquid Dehumidifier System

, , &
Pages 1050-1060 | Published online: 16 Jan 2014
 

Abstract

A novel waste-heat-driven hybrid solid–liquid dehumidifier (HSLD) system is proposed and its performance modeling is carried out. This new type of dehumidification system can be efficiently driven by low-temperature heat sources such as solar energy, while achieving high dehumidification performance due to its unique serial dehumidification and regeneration processes. The process airflow is first dehumidified by a liquid dehumidifier and then by a solid one; at the same time, the regeneration air first regenerates the solid dehumidifier and then the liquid one. The reason is because the liquid dehumidifier is more efficient to dehumidify humid air with low-temperature regeneration heat, while the solid dehumidifier can effectively dehumidify drier air with higher temperature regeneration heat. Theoretical analysis and performance analysis of the HSLD system are carried out under varied process air conditions and regeneration temperatures. The results show that this new HSLD system is promising for dehumidification performance improvement with low-temperature regeneration heat. It can be efficiently driven by waste heat as low as 60∼70°C with a satisfactory dehumidification performance. For the HSLD system, the dehumidification ratio between the liquid and the solid dehumidifiers varies according to the regeneration temperature and process air inlet conditions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.