360
Views
10
CrossRef citations to date
0
Altmetric
feature articles

Thermal Analysis for Package Cooling Technology Using Phase-Change Material by Using Thermal Network Analysis and CFD Analysis With Enthalpy Porosity Method

&
Pages 1227-1234 | Published online: 04 Mar 2014
 

Abstract

This paper describes a transient cooling technology for electronic equipments using phase-change material (PCM). The module is made of low-cost materials, yet it is designed to achieve a reasonably high level of heat transfer performance. Paraffin is used as the PCM. In previous our report, we can estimate the cooling performance of PCM by using a thermal network method, which cannot calculate melted PCM flow. In this paper, we consider the heat transfer phenomena of PCM module more deeply by using computational fluid dynamics (CFD) analysis with an enthalpy porosity method. By using this method, we can calculate phase-change phenomena and flow phenomena of melted PCM with CFD analysis. First, we briefly explain the results of the experiment and the thermal network analysis. Then we describe the details of CFD analysis with the enthalpy porosity method. In this calculation, melted PCM flow and heat absorption of latent heat can be analyzed. Therefore, we can discuss the reason why the thermal network analysis can estimate cooling performance of PCM module without dealing with melted PCM flow. The calculation results showed that natural convective flow of melted PCM affects the cooling performance of the PCM module. In the case where the PCM module is set vertically, high temperature and low temperature locations exist on the substrate. If several devices are cooled with the PCM module, device consuming the most power must be set in the lower part of the PCM module. From these results, we can conclude that no natural convective flow occurs in our experiment due to the shape of the PCM module.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.