178
Views
1
CrossRef citations to date
0
Altmetric
Articles

Low Mass Flux Laminar Jet Cooling with Different Additives: An Enhancement-cum-Comparative Study

ORCID Icon & ORCID Icon
Pages 125-140 | Published online: 20 Feb 2022
 

Abstract

The low flow rate laminar water jet is the most economical and efficient cooling methodology; however, the low heat removal capacity makes this process inappropriate for fast cooling operations. In the current work, the heat transfer rate has been increased by enlarging the stagnation zone length. This was attained by reducing the viscosity, surface tension and altering other thermo-physical properties of the coolants. The thermal analysis reveals that the maximum critical heat flux is achieved in case of 240 ppm Cetyltrimethylammonium bromide + water i.e., 1.7 MW/m2, which is 1.39 times higher than pure water. This is attributed to the significant reduction in the surface tension and viscosity. Use of additives like sodium carbonate and surfactant enhance the stagnation zone length. Furthermore, due to foaming nature of the coolant (500 ppm Ethanol + water), the heat transfer rate declines and a critical heat flux of 1.37 MW/m2 is observed. The visual observations are consistent with the results obtained for each coolant. Based on the high heat removal capacity, the low mass flux laminar jet cooling methodology with additives provide better cooling than that of the high-pressure laminar jet and high mass flux spray cooling.

Disclosure statement

No potential competing interest was reported by the authors.

Additional information

Notes on contributors

Akash Ranjan Pati

Akash Ranjan Pati is currently a Ph.D. candidate in Chemical Engineering at the National Institute of Technology Rourkela, India. His research focuses on enhancement of spray and jet cooling, droplet dynamics on liquid surfaces and phase change heat transfer processes. He received his B.Tech in Chemical Engineering from C.V. Raman College of Engineering, Bhubaneswar and his M.Tech in Chemical Engineering from National Institute of Technology Rourkela.

Soumya Sanjeeb Mohapatra

Soumya Sanjeeb Mohapatra is an Assistant Professor in Chemical Engineering at the National Institute of Technology Rourkela, India. His research focuses on heat transfer and fluid mechanics in spray cooling, jet cooling, droplet dynamics and wastewater treatment. He has published more than 65 articles in various international journals. He earned his M.Tech and Ph.D. degrees in Chemical Engineering from Indian Institute of Technology, Kharagpur.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.