143
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Effects of Rhus coriaria L. hydroalcoholic extract on the lipid and antioxidant profile in high fat diet-induced hepatic steatosis in rats

, , , , , , , , & show all
Pages 75-83 | Received 15 Apr 2018, Accepted 25 Sep 2018, Published online: 17 Dec 2018
 

Abstract

Oxidative stress is related to increased fat deposition in the liver, known as hepatic steatosis. The present study is an evaluation of the anti-oxidative and antihyperlipidemic effects of the hydroalcoholic extract of Rhus coriaria L. (HARE) in rats on a high-fat diet (HFD). Twenty male Wistar rats were divided into four groups: control, HFD, HFD + HARE 50 mg/kg/day, and HFD + HARE 250 mg/kg/day for 12 weeks. Animals were weighed weekly and treated with the HARE extract for 12 weeks by gavage. Subsequently, the histopathological changes, oxidative markers, and lipid profile were evaluated. Statistical analysis was performed using the one-way analysis of variance (ANOVA) for multiple comparisons. First, the active ingredients of the extract were determined by HPLC. Then, the levels in the serum lipid profile (TG, cholesterol, HDL, and LDL) in rats fed with the HFD + HARE were analyzed where a significant reduction was observed. The HFD proved to increase the activity of the liver enzymes, the serum lipid levels, and the malondialdehyde (MDA) level. The ferric-reducing antioxidant activity power (FRAP), catalase (CAT), and superoxide dismutase (SOD) catalytic activity were reduced in the liver homogenate of HFD rats compared to the controls. Additionally, the aforementioned liver enzymes activities were reduced in response to HARE. Evaluation of oxidative stress determined a reduction in the MDA level while a raised FRAP was confirmed. In accordance with the present results, histopathological observations have also demonstrated that HARE ameliorated grade-1 hepatic steatosis induced by HFD. Taken together, the findings of this study introduce HARE as a future potential therapeutic agent in treating hepatic steatosis and reducing oxidative damages of an HFD in the liver.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors would like to thank the Mashhad University of Medical Sciences for their financial support [Grant No. 950374].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.