117
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Nω-nitro-L-arginine, a nitric oxide synthase inhibitor, attenuates nickel-induced neurotoxicity

ORCID Icon, ORCID Icon, &
Pages 2202-2211 | Published online: 20 May 2021
 

Abstract

The various mediums of exposure to nickel (Ni) compounds have raised enormous public health concerns, as it has been illustrated to exert toxic effects in biological organs, including the brain. We have previously implicated the involvement of elevated nitric oxide (NO) in Ni-induced oxidative stress in the brain. Hence, the present study investigated the ameliorative potential of Nω-nitro-L-arginine (L-NA), a NO synthase inhibitor, following Ni-induced neurotoxicity. Adult male rats were divided into four groups; control (normal saline), 10 mg/kg Ni chloride (NiCl2) only, 1 mg/kg L-NA, or 2 mg/kg L-NA co-administered with NiCl2. The administration was via daily intraperitoneal injections for three weeks. Neurobehavioural assessments performed thereafter ascertained short-term spatial memory and anxiety. Furthermore, histological evaluations of the cortex, hippocampus, and striatum were carried out using routine hematoxylin and eosin technique, while the phosphotungstic acid hematoxylin method was used to express the degree of astrogliosis. Biochemical analysis of NO levels was examined along with other oxidative stress markers (superoxide dismutase, catalase, glutathione, glutathione S transferase, glutathione peroxidase, myeloperoxidase, and lipid peroxidation). The results illustrated altered behavioral responses, a higher population of degenerating neurons, and astrocytes in the NiCl2 group. There was also an elevation in the NO level and a corresponding reduction in antioxidant activities. However, these debilitating changes were ameliorated in the L-NA treated groups. These results demonstrate an association between alterations in NO synthesis pathway and Ni neurotoxicity, which may render neuronal cells susceptible to damage by oxidative stress. This may yet be another mechanism and useful therapeutic marker in deciphering Ni-induced neurotoxicity.

Disclosure statement

The authors declare no conflict of interest.

Author contributions

OMA conceived and designed research. OMI, OMA, COAO, and APE conducted experiments. OMI and APE analyzed data. OMI, OMA, and COAO wrote the manuscript. All authors read and approved the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.