233
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Bathymetry Inversion with the Gravity-Geologic Method: A Study of Long-Wavelength Gravity Modeling Based on Adaptive Mesh

, , , , &
Pages 329-340 | Received 10 Oct 2016, Accepted 22 May 2017, Published online: 10 Jul 2017
 

ABSTRACT

Modeling of long-wavelength gravity anomaly is crucial for bathymetry inversion with a gravity-geologic method. We propose a new method, named as iGGM, to approximate the long-wavelength gravity anomalies by using a finite element method based on an adaptive triangular mesh which is constructed by uneven control points. The mesh size is suitably controlled to ensure that there are several control points in each grid. By using iGGM, the bathymetry in the South China Sea (Test Area #1: 112°E–119°E, 12°N–20°N) and East China Sea (Test Area #2: 125°E–130°E, 25°N–30°N) is estimated. The performance of the method was evaluated by comparing the predictions with Earth topographical database 1 (ETOPO1) model and shipborne depths in the test points. Results show that the depths derived by iGGM have a strong correlation with the shipborne depths. In the test points, the mean values of their differences are smaller than 10 m. The standard deviations of their differences are smaller than 120 m and their correlation is stronger than 0.98. Meanwhile, the results provided by the iGGM model are comparable with that obtained by the ETOPO1 model, e.g., the differences between iGGM and ETOPO1 models in test points for Test Areas 1 and 2 are 116 and 70 m in standard deviation, respectively.

Acknowledgements

The authors would like to thank DTU for providing gravity data and NGDC for providing ship depth data.

Funding

This work is funded by the National Nature Science Foundations of China (41404019 and 41674026) and the open fund of Key Laboratory of Space Utilization, Chinese Academy of Sciences (CSU-WX-A-KJ-2016-044).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 312.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.