547
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Three-Dimensional Geographically Weighted Inverse Regression (3GWR) Model for Satellite Derived Bathymetry Using Sentinel-2 Observations

Pages 1-23 | Received 17 Mar 2017, Accepted 23 Aug 2017, Published online: 11 Oct 2017
 

ABSTRACT

Current trends of development of satellite derived bathymetry (SDB) models rely on applying calibration techniques including analytical approaches, neuro-fuzzy systems, regression optimization and others. In most of the cases, the SDB models are calibrated and verified for test sites, that provide favorable conditions for the remote derivation of bathymetry such as high water clarity, homogenous bottom type, low amount of sediment in the water and other factors. In this paper, a novel 3-dimensional geographical weighted regression (3GWR) SDB technique is presented, it binds together methods already presented in other studies, the geographically weighted local regression (GWR) model, with depth dependent inverse optimization. The proposed SDB model was calibrated and verified on a relatively difficult test site of the South Baltic near-shore areas with the use of multispectral observations acquired by a recently launched Sentinel-2 satellite observation system. By conducted experiments, it was shown that the proposed SDB model is capable of obtaining satisfactory results of RMSE ranging from 0.88 to 1.23[m] depending on the observation and can derive bathymetry for depths up to 12m. It was also shown, that the proposed approach may be used operationally, for instance, in the continuous assessment of temporal bathymetry changes, for areas important in the context of ensuring local maritime safety.

Acknowledgments

The author wishes to thank the Maritime Office in Gdynia, Poland for providing survey sounding bathymetry data used during the research presented in the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 312.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.