225
Views
52
CrossRef citations to date
0
Altmetric
Original Articles

Geochemical Controls on Microbial Nitrate-Dependent U(IV) Oxidation

, &
Pages 371-378 | Received 01 Oct 2004, Accepted 27 May 2005, Published online: 23 Feb 2007
 

After reductive immobilization of uranium, the element may be oxidized and remobilized in the presence of nitrate by the activity of dissimilatory nitrate-reducing bacteria. We examined controls on microbially mediated nitrate-dependent U(IV) oxidation in landfill leachate-impacted subsurface sediments. Nitrate-dependent U(IV)-oxidizing bacteria were at least two orders of magnitude less numerous in these sediments than glucose- or Fe(II)-oxidizing nitrate-reducing bacteria and grew more slowly than the latter organisms, suggesting that U(IV) is ultimately oxidized by Fe(III) produced by nitrate-dependent Fe(II)-oxidizing bacteria or by oxidation of Fe(II) by nitrite that accumulates during organotrophic dissimilatory nitrate reduction. We examined the effect of nitrate and reductant concentration on nitrate-dependent U(IV) oxidation in sediment incubations and used the initial reductive capacity (RDC = [reducing equivalents] - [oxidizing equivalents]) of the incubations as a unified measurement of the nitrate or reductant concentration. When we lowered the RDC with progressively higher nitrate concentrations, we observed a corresponding increase in the extent of U(IV) oxidation, but did not observe this relationship between RDC and U(IV) oxidation rate, especially when RDC > 0, suggesting that nitrate concentration strongly controls the extent, but not the rate of nitrate-dependent U(IV) oxidation. On the other hand, when we raised the RDC in sediment incubations with progressively higher reductant (acetate, sulfide, soluble Fe(II), or FeS) concentrations, we observed progressively lower extents and rates of nitrate-dependent U(IV) oxidation. Acetate was a relatively poor inhibitor of nitrate-dependent U(IV) oxidation, while Fe(II) was the most effective inhibitor. Based on these results, we propose that it may be possible to predict the stability of U(IV) in a bioremediated aquifer based on the geochemical characteristics of that aquifer.

This work was supported by Grants FG03-02ER63443 and DE-FC02-96ER62278 from the Office of Biological and Environmental Research (OBER) of the Office of Science, U.S. Department of Energy (DOE), Natural and Accelerated Bioremediation Research (NABIR) Program. Preparation of the manuscript was partially supported by the Center for Environmental Chemistry and Geochemistry at the Pennsylvania State University (JMS).

Notes

a Determined by monitoring consumption of glucose, or Fe(II) or production of U(VI) or sulfate.

b Values calculated from CitationDean (1985).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 370.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.