137
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Distinct Microbial Behavior of Re Compared to Tc: Evidence Against Microbial Re Fixation in Aquatic Sediments

, &
Pages 470-483 | Received 26 Nov 2008, Accepted 08 May 2009, Published online: 16 Sep 2009
 

Abstract

Rhenium is enriched in suboxic and anoxic sediments relative to oxic sediments, a characteristic that is being exploited in its use as a paleoredox indicator. Rhenium is fixed at sediment depths where iron reduction and sulfate reduction are the dominant microbial terminal electron-accepting processes. In order to explore mechanisms of its fixation, we investigated perrhenate behavior in pure, batch cultures of two dissimilatory sulfate-reducing strains (Desulfovibrio desulfuricans subsp. desulfuricans and Desulfovibrio desulfuricans ND132) and two iron-reducing strains (Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1). Perrhenate concentrations tested ranged from 0.04 to 12 μM, roughly 4 to 7 orders of magnitude larger than seawater Re concentrations. Within this broad concentration range, none of the organisms tested actively removed Re from solution during one week's growth to stationary phase. Despite these results, the sulfate-reducing cultures appeared to have reached supersaturation relative to ReS2(s), and the iron-reducing cultures may have reached supersaturation relative to ReO2(s). We conclude that neither direct nor short-term indirect microbial processes involving these bacteria are likely to explain Re fixation in sediments. Our results cannot exclude the possibility that microbial metabolites, such as Fe(II) or sulfide, do drive abiotic Re fixation over longer periods of time. The lack of perrhenate reduction by dissimilatory sulfate-reducing bacteria and iron-reducing bacteria contrasts with published reports of pertechnetate behavior. Despite many qualitative similarities between Re and Tc, it is clear that these two elements are quantitatively dissimilar, with Re fixation requiring more intensely reducing conditions.

This research was supported by a Smithsonian Institution Predoctoral Fellowship to the corresponding author. The authors also greatly appreciate the assistance of Gerhardt (Fritz) Riedel, Georgia Riedel, Tyler Bell and Nise Butera of the Smithsonian Environmental Research Center and William McDonough and Richard Ash of the University of Maryland Department of Geology.

Notes

∗Data for uninoculated culture medium with and without TiNTA

∗∗TiNTA was added only to active cultures of SRB

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 370.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.