130
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Microbial Characteristics of Young Soils on Disposal Sites of Coal Combustion Waste in Bosnia and Herzegovina

, , , , &
Pages 574-581 | Received 15 Jan 2010, Accepted 12 Jul 2010, Published online: 19 Aug 2011
 

Abstract

Microbial communities are essential for a range of soil functions and adjust to soil development, environmental conditions and pollution level by community structure, abundance and activity. At desolated landfills of coal combustion waste (CCW) that were un-covered and covered with shallow soil material layers, soil microbial indicators were estimated for both the ecological and eco-toxicological evaluation. The young CCW sites with pH values of 9.5 and substantial coal-derived organic carbon showed significant microbial biomass content and nitrogen mineralization rates. At the 0 to 15 year old landfills, the microbial biomass content and activities increased significantly with age. However, large spatial variations occurred due to the variation of the cover material thickness, the degree of ash-aging and the tillage practices. Carbon dioxide was even sequestered at young CCW sites as indicated during laboratory incubation with an open apparatus purging continuously ambient air. In accordance, the respiratory quotient went down to 0.03 mol CO2 evolution rate per mol O2 uptake rate, indicating that the CO2 evolution rate is limited as an overall quality indicator. Within 15 years, these ‘Technosols’ showed pH values of 7.7 and decalcified while changes in microbial biomass content and activity rates were mainly related to N availability. We concluded that the available As, B, Cr and Ni pollution at CCW sites seemed largely immobilised by organic matter and alkalinity and therefore did not to inhibit the microbial colonisation and development of high microbial activity within 15 years. However, the ash disposals pose a contamination risk by wind erosion and a future risk to human or environmental health when toxic metals will be released in soil at low pH values, low organic matter and low antagonistic ion contents.

ACKNOWLEDGMENTS

The authors are grateful to Helga Köller for the excellent technical assistance. Thanks to Louis Reid for the improvement of the English. The authors are also grateful to RECOAL partners (E.U. STREP ‘Reintegration of Coal Ash Disposal Sites and Mitigation of Pollution in the West Balkan Area—RECOAL’) for the support and the constructive comments. This work was in part supported by the E.U. IP ‘Sustainability Impact Assessment: Tools for Environmental, Social and Economic Effects of Multifunctional Land Use in European Regions—SENSOR’.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 370.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.