339
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Structural and Chemical Characterization of Placer Gold Grains: Implications for Bacterial Contributions to Grain Formation

, , , , , & show all
Pages 158-169 | Received 01 May 2014, Accepted 01 Jun 2014, Published online: 20 Aug 2014
 

Abstract

Gold grains collected from the Rio Saldaña River, Colombia were hundreds of micrometers in size and discoid-ellipse in shape. Fourteen of 63 grains contained an iron oxyhydroxide coating that occurred as ca. 50 to 100 nm thick lamina while thicker coatings were comprised of colloids 200 nm to 4 μm in diameter. Bacterial-size casts were observed throughout the thicker iron oxyhydroxide coating and intuitively represent relic impressions of bacterial cells. The surface textures of gold grains were generally smooth with surficial depressions or crevices containing detrital material colonized by bacteria. Focus Ion Beam (FIB) milled cross-sections demonstrated that the detrital material contained nanophase gold particles. Biofilm attached to this detrital material contained ca. 2 to 3 nm colloidal gold attached to exopolymeric substances. Cross sections of grains revealed solid cores with vesicular voids near the grain edge including a bacterial-size cast interpreted to be a permineralized bacterial cell. Synchrotron-based elemental mapping indicated that grains contained heterogenously distributed Ag and Cu. While strong Ag and Cu signals (relative to Au) were detected in the core, a stronger Au signal occurred at the edge of grains demonstrating enriched rims of secondary gold. The preservation of bacterial casts and biofilms associated with secondary gold structures at the surface of grains suggest that bacteria may contribute to gold enrichment and growth in this placer environment. Bacteria, occurring on the surface of 13 of 25 gold grains, were enriched by “inoculating” individual grains into separate test tubes containing R2B growth medium. Enriched growth of bacteria on gold grain surfaces demonstrated preferential attachment onto detrital material within creviced regions. The dominant bacteria from these enrichments were transferred to solid R2A medium to obtain pure isolates. The isolates were identified as one of four bacterial species: Nitrobacter sp. 263, Shewanella sp. YM-8, Sediminibacterium sp. B2-10-2 and sp. I-32 based on 16S ribosomal DNA sequencing.

Acknowledgments

SEM analysis was performed at the Nanofabrication Laboratory at Western University.

Funding

Funding was provided through a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant awarded to Gordon Southam. Experiments performed at the Pacific Northwest Consortium/X-ray Science Division (PNC-XSD) Sector 20, Advanced Photon Source, Argonne National Laboratory, was supported by the U.S. Department of Energy, Basic Energy Sciences, a major facilities access grant from the NSERC and the Advanced Photon Source.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 370.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.