401
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Isolation and Molecular Characterization of Heavy Metal-Resistant Alcaligenes faecalis from Sewage Wastewater and Synthesis of Silver Nanoparticles

, &
Pages 836-845 | Received 01 Dec 2014, Accepted 01 Jan 2015, Published online: 08 Aug 2015
 

Abstract

Environmental pollution with toxic heavy metals is increasing throughout the world alongside industrial development. Microorganisms and microbial products can be highly efficient bioaccumulators of soluble and particulate forms of metals, especially dilute external solutions. Microbe related technologies (Biotechnology) may provide an alternative or additive conventional method for metal removal or metal recovery. This study dealt with isolation, identification and characterization of heavy metal-resistant (Pb2+, Cd2+, Al3+, Cu2+, Ag2+ and Sn2+) bacteria from sewage wastewater at Taif Province, Saudi Arabia. Nine bacterial isolates were selected by using an enrichment isolation procedure based on high level of heavy metal resistance. All the isolates showed high resistance to heavy metals with Minimum Inhibitor Concentration (MIC) ranging from 800 μg/ml to 1400 μg/ml. All nine resistant isolates showed multiple tolerances to heavy metals. On the basis of morphological, biochemical and 16S rRNA characterization, the most potent isolates (Cd1-1, Ag1-1, Ag1-3 and Sn1-1) were identified as Alcaligenes faecalis. Scanning electron microscope analysis showed that the morphology of Alcaligenes faecalis Ag1-1 was unchanged after growth in medium without and with addition of Ag2+ indicative Ag2+ is not toxic to the isolate under the conditions tested. The ability of Alcaligenes faecalis Ag1-1 to synthesize sliver nanoparticles was examined. The heavy metal-resistant bacteria obtained could be useful for the bioremediation of heavy metal-contaminated environment.

Funding

This work was supported by the research grant from Taif University, Contract No. 1/434/2466.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 370.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.