1,264
Views
56
CrossRef citations to date
0
Altmetric
Articles

Isolation of Phosphate Solubilizing Bacteria from Maize Rhizosphere and Their Potential for Rock Phosphate Solubilization–Mineralization and Plant Growth Promotion

, &
Pages 81-95 | Received 04 Jan 2016, Accepted 21 Jan 2016, Published online: 01 Jul 2016
 

ABSTRACT

Phosphate solubilizing bacteria (PSB) play a significant role in plant P nutrition by their effect on soil P dynamics and their subsequent ability to make P available to plants via solubilization and mineralization processes. This study aimed to evaluate the effect of separate and combined use of indigenous PSB, poultry manure (PM) and compost on solubilization and mineralization of rock phosphate (RP) and their subsequent effect on growth and P accumulation of maize (Zea mays L.). A group of fifty seven bacteria were isolated from the rhizosphere/rhizoplane of maize that had been grown in soils collected from varying altitudes (655–2,576 m) of the mountain region of Rawalakot, Azad Jammu and Kashmir, Pakistan. After screening, the capacity of eleven isolates to solubilize mineral phosphate was quantitatively evaluated using insoluble Ca3(PO4)2 in culture medium as a time course study through spectrometer. The growth hormone producing (IAA) capacity of the isolates was also determined. Furthermore, five potential isolates were tested for their ability to increase P release capacity (mineralization) of insoluble RP in an incubation study. The effect of PSB inoculation on maize was determined in a completely randomized greenhouse experiment where root and shoot biomass and P accumulation in plants were assessed. The P solubilization index of selected isolates varied from 1.94 to 3.69, while the P solubilization efficiency ranged between 94.1% and 269.0%. The isolates MRS18 and MRS27 displayed the highest values. The P solubilization in the liquid medium was maximum at 6 and 9 days of incubation ranging between 9.91 and 44.04 µgmL−1 and the isolates MRS27 and MRS34 exhibited the highest solubilization. Six isolates showed additional capability of producing IAA ranging between 2.66 and 28.41 µgmL−1. Results of the incubation study indicated that P release capacity (P mineralization) of RP-amended soil varied between 6.0 and 11.8 µgPg−1 that had been significantly increased to 30.6–36.3 µgPg−1 (maximum value) when PSB were combined with RP. The combined application of PSB and organic amendments (PM, compost) with RP further increased P mineralization by releasing a maximum of 37.7 µgPg−1 compared with separate application of RP (11.8 µgPg−1) and organic amendments (21.5 and 16.5 µgPg−1). The overall effect of PSB (as a group) with RP over RP alone on maize growth showing a relative increase in shoot length 21%, shoot fresh weight 42%, shoot dry weight 24%, root length 11%, root fresh weight 59%, root dry weight 35% and chlorophyll content 32%. This study clearly indicates that use of PSB, and organic amendments with insoluble RP could be a promising management strategy to enhance P availability in soil pool and improve plant growth in intensive cropping systems.

Acknowledgment

The authors would like to thank the authorities of the NARC, Islamabad, Pakistan especially the Land Resources Research Institute for providing laboratory facilities during this study.

Funding

This research work was supported by the grant received from the Pakistan Science Foundation, Islamabad, Pakistan.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 370.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.