184
Views
4
CrossRef citations to date
0
Altmetric
Articles

Dominant and Active Methanogens in the Production Waters From a High-Temperature Petroleum Reservoir by DNA- and RNA-Based Analysis

, , , , , , , , , , & ORCID Icon show all
Pages 191-198 | Received 04 Aug 2019, Accepted 09 Sep 2020, Published online: 12 Oct 2020
 

Abstract

Methane metabolism in deep subsurface petroleum reservoirs is of paramount interest in the global biogeochemical cycle of carbon. Methanogenesis in such habitats is driven mostly by methanogens in syntrophic association with bacteria. In the present study, methanogenic communities in production water samples from six wells of a high-temperature petroleum reservoir were analyzed based on both genomic 16S rDNA and metabolically active 16S rRNA. The PCR-amplified mcrA gene analysis showed that Methanosaeta (26%) and Methanomassiliicoccus (56%) were separately the dominant members in sample W2_71 and W9_18 at the DNA level. In comparison, the RNA-based analysis showed that Methanosaeta (63 ∼ 83%) followed by Methanolinea (16 ∼ 23%) were the most active methanogens, which were different from the communities of genomic DNA. While several lines of studies indicated that CO2-reducing methanogens of the genus Methanothermobacter was the most frequently detected phylotype in deep-subsurface petroleum reservoirs. Redundancy analysis (RDA) showed the possible correlation between active methanogens (Methanosaeta) and environmental factors (CO32-). The datasets indicated the importance of investigating methanogenic community by integrating DNA- and RNA-based approaches. These results provide new insight into active methanogens in high-temperature petroleum reservoirs, and promote a comprehensive understanding of methanogens as well as their potential methanogenic pathways in such environments.

Acknowledgments

The authors are grateful to the management of Jiangsu Oilfield for sampling support.

Disclosure statement

All the authors declare that they have no conflict of interest.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [No. 41403066], and the Fundamental Research Funds for the Central Universities of China [No. 222201414029].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 370.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.