292
Views
1
CrossRef citations to date
0
Altmetric
Articles

Antibacterial and Antibiofilm Activity of Carboxymethyl Cellulose Stabilized Silver Nanoparticles Synthesized using Quercetin and Their Effects on Soil Respiration and Enzymes

ORCID Icon
Pages 679-688 | Received 24 Nov 2021, Accepted 11 Apr 2022, Published online: 01 May 2022
 

Abstract

Silver nanoparticles (AgNPs) were synthesized using quercetin in aqueous carboxymethyl cellulose (CMC) solution, which is used as both the reducing and capping bioagents in the current study. The characterization of synthesized CMC-Q AgNPs was performed through different analysis techniques. Antibacterial activity was assessed by using agar well diffusion assay against both gram-positive and gram-negative strains. Also, the effect of nanoparticles on biofilm formation of Staphylococcus aureus was investigated. Moreover, soil treated with CMC-Q AgNPs and AgNO3 was analyzed in terms of soil respiration, silver contents, and soil exoenzymes (dehydrogenase and urease). In the study, the microscopic images represented the average size of the CMC-Q AgNPsto be 27 nm and the zeta potential of −59.4 (mV) could also be signed as the higher stability. Generally, the results indicate that CMC-Q AgNPs might be powerful antibacterial agents. Furthermore, we found that CMC-Q AgNPs and AgNO3 could both inhibit exoenzyme activities in soil, with the inhibitory effects especially obvious at higher exposure times and concentrations. Also, the findings revealed that Ag concentration and soil respiration (% of control) in the soil treated with AgNO3 was lower compared to CMC-Q AgNPs treatment. This might be explained in terms of different transformations of two compounds in the soil.

Acknowledgments

The author expresses his most sincere gratitude to Ayse CETIN and Vildan ERCI for soil analysis, and thanks to Necmettin Erbakan University Science and Technology Research and Application Center (BITAM) for their research infrastructure.

Disclosure statement

The authors declare that there is no conflict of interest regarding the publication of this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 370.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.