249
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Thermal buckling and vibration of functionally graded sinusoidal microbeams incorporating nonlinear temperature distribution using DQM

, , , &
Pages 665-689 | Received 10 Sep 2016, Accepted 05 Nov 2016, Published online: 16 Dec 2016
 

ABSTRACT

Thermal buckling and vibration of functionally graded (FG) sinusoidal microbeams with temperature-dependent properties and three kinds of temperature distributions are investigated in this article. As one material length scale is introduced, the modified couple stress theory is capable of predicting the small-scale effects. Material properties of FG microbeams are calculated using the Mori–Tanaka method. Furthermore, temperature-dependent properties are taken into account to investigate the mechanical characteristics of FG microbeams in high–thermal-gradient environment. Motion equations and the associated boundary conditions are obtained simultaneously through variational principle. Then Navier procedure and the differential quadrature method incorporating an iterative procedure are used to solve the governing differential equations with temperature-dependent properties and general boundary conditions. Numerical examples are performed for demonstrating the influences of temperature distribution, beam thickness, material length scale, slenderness ratio, shear deformation, functionally graded index, boundary conditions, and temperature-dependent/independent properties on thermal buckling and free vibration behaviors of FG microbeams.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 694.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.