427
Views
71
CrossRef citations to date
0
Altmetric
Articles

Plane waves in nonlocal thermoelastic solid with voids

&
Pages 580-606 | Received 28 Jul 2018, Accepted 21 Nov 2018, Published online: 22 Jan 2019
 

Abstract

This work is concerned with the propagation of time harmonic plane waves in an infinite nonlocal thermoelastic solid having void pores. Three sets of coupled dilatational waves and an independent transverse wave may travel with distinct speeds in the medium. All these waves are found to be dispersive in nature, but the coupled dilatational waves are attenuating, while transverse wave is nonattenuating. Coupled dilatational waves are found to be influenced by the presence of voids, thermal field and elastic nonlocal parameter. While the transverse wave is found to be influenced by the nonlocal parameter, but independent of void and thermal parameters. For a particular model, the effects of frequency, void parameters, thermal parameter and nonlocality have been studied numerically on the phase speeds, attenuation coefficients and specific losses of all the propagating waves. All the computed results obtained have been depicted graphically and explained.

Acknowledgments

The authors are thankful to the unknown reviewer for his/her suggestions to improve the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 694.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.