155
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Modelling the Effect of Particle Size in Microfiltration

, , &
Pages 1754-1770 | Received 25 Sep 2007, Accepted 12 Jan 2008, Published online: 04 Jun 2008
 

Abstract

Particle deposition at the filter surface in microfiltration is studied to better understand the effect of particle size on cake morphology and permeability reduction. Numerical simulations are carried out on a Hele Shaw cell which consists of a representative unit element of a two dimensional spatially periodic flat plate with pores. The particle concentration in the fluid is assumed to be low so that particles enter one by one into the computation domain. Particles follow the flow streamlines under creeping flow conditions from a random initial location until they are subjected to physico‐chemical interactions near the filter surface or a particle already deposited. The computational domain consists of two regions: a fluid region and a porous medium region, i.e. the particle cake. The flow over the two regions of the Hele Shaw cell is computed using the Darcy model, including the variations of the permeability field due to the cake formation. Results show that both the permeability and the filtration efficiency are affected significantly by particle size.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.