574
Views
100
CrossRef citations to date
0
Altmetric
ADSORPTION

Characterization of Adsorptive Capacity and Investigation of Mechanism of Cu2+, Ni2+ and Zn2+ Adsorption on Mango Peel Waste from Constituted Metal Solution and Genuine Electroplating Effluent

, &
Pages 3770-3791 | Received 07 Oct 2008, Accepted 12 May 2009, Published online: 05 Nov 2009
 

Abstract

The present study reports the potential of mango peel waste (MPW) as an adsorbent material to remove Cu2+, Ni2+, and Zn2+ from constituted metal solutions and genuine electroplating industry wastewater. Heavy metal ions were noted to be efficiently removed from the constituted solution with the selectivity order of Cu2+ > Ni2+ > Zn2+. The adsorption process was pH-dependent, while the maximum adsorption was observed to occur at pH 5 to 6. Adsorption was fast as the equilibrium was established within 60 min. Maximum adsorption of the heavy metal ions at equilibrium was 46.09, 39.75, and 28.21 mg g for Cu2+, Ni2+, and Zn2+, respectively. Adsorption data of all the three metals fit well the Langmuir adsorption isotherm model with 0.99 regression coefficient. Release of alkali and alkaline earth metal cations (Na+, K+, Ca2+, Mg2+) and protons H+ from MPW, during the uptake of Cu2+, Ni2+, and Zn2+, and EDX analysis of MPW, before and after the metal sorption process, revealed that ion exchange was the main mechanism of sorption. FTIR analysis showed that carboxyl and hydroxyl functional groups were involved in the sorption of Cu2+, Ni2+, and Zn2+. MPW was also shown to be highly effective in removing metal ions from the genuine electroplating industry effluent samples as it removed all the three metal ions to the permissible levels of discharge legislated by environment protection agencies. This study indicates that MPW has the potential to effectively remove metal ions from industrial effluents.

Notes

a Difference between metals released after metal sorption and that by the control (deionized water);

b R a/r: ratio of metals adsorbed to cations released.

n.a: not available.

a Experimental conditions: 50 ml wastewater, pH 5.0, 0.5 g MPW biomass (10 g/L), orbital shaking at 100 rpm at 25 ± 2°C for 60 min.

b UNEP(Citation35).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.