103
Views
2
CrossRef citations to date
0
Altmetric
MEMBRANE

Effects of Air-Sparging on the Filtration Flux and Cake Properties in Cross-Flow Microfiltration of Size-Distributed Fine Particles

&
Pages 3485-3505 | Received 04 Mar 2009, Accepted 10 Jun 2009, Published online: 05 Nov 2009
 

Abstract

The effect of air-sparging on the performance of cross-flow microfiltration of size-distributed fine particles is studied. The filtration flux and cake properties under various air velocities are measured and discussed. A higher air velocity leads to a lighter cake due to the higher shear stress acting on the membrane surface, especially under a bubble flow regime. However, the decrease in deposited particle size causes higher average specific cake filtration resistance as well as lower pseudo-steady filtration flux. A force balance model is employed to grasp the particle deposition on the membrane surface. The drag forces due to fluid flows play a major role in determining the particle deposition probability. The interparticle forces are dominant for submicron particles, while the inertial lift and gravitational force increase the weights for those particles larger than 10 µm. The occurrences of a minimum deposited probability for 0.2–0.3 µm particles and a maximum value for ca 2 µm particles can be reasonably explained by the force analysis. The particle size distribution in the filter cake, cake mass, average specific cake filtration resistance, and filtration flux can be estimated satisfactorily using theoretical models. In cross-flow microfiltration using a sample including submicron and micron particles, the filtration flux may be increased by sparging a few air bubbles. Air sparging is more effective in enhancing the filtration flux under lower suspension and air velocities due to the particle size effect. However, the flux-enhanced effectiveness decreases with increasing air velocity under bubble flow and becomes negative under a slug flow regime.

ACKNOWLEDGEMENTS

The authors wish to express their sincere gratitude to the National Science Council of the Republic of China for its financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.