220
Views
13
CrossRef citations to date
0
Altmetric
ADSORPTION

Synthesis and Characterization of a Bentonite-Alginate Microspherical Adsorbent for Removal of Uranyl Ions from Aqueous Solutions

, , &
Pages 288-298 | Received 04 Jan 2009, Accepted 15 Jul 2009, Published online: 21 Jan 2010
 

Abstract

A novel microspherical adsorbent for the removal of uranium from aqueous solutions was developed by immobilizing of natural bentonite in the polymeric matrix of calcium alginate. Different uptake properties of the prepared microspheres were examined using batch, stirred and column methods. The adsorbent showed high affinity toward uranium ions, especially at pHs above 3. Major uptake mechanisms included ion exchange, chelating of the (UO2)2+ ions to the [sbnd]OH groups of alginate, and surface complexation with bentonite. Surprisingly, the capacity of microspheres was higher than both its constituents, revealing that a synergetic effect occurs. Adsorption kinetics was controlled by slow chemical reaction of ions with bentonite, and it obeyed a shrinking core model. Also a pseudo-second order chemical reaction fairly fitted the kinetics data. The synthesized microsphrese, in addition to cost efficiency, showed a relatively good column performance and high durability and reusability.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.