85
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Water Transport Polymers – Structure/Property Relationships of a Series of Phosphazene Polymers

, , , , , , , & show all
Pages 1880-1885 | Received 01 Nov 2009, Accepted 12 Mar 2010, Published online: 30 Aug 2010
 

Abstract

A study was undertaken to explore the water passing properties of a series of phosphazene polymers versus the attached pendant group structure. Pendant groups containing different numbers of ethyleneoxy groups were synthetically attached to the backbone of phosphazene polymers. Phosphazene polymers facilitate these types of studies because, during their synthesis, the polymer backbone is formed first and then the desired pendant groups are attached through nucleophilic substitution. For these studies, four polymer series were synthesized and tested for their water passing properties. The polymers contained different amounts of ethyleneoxy units. Two different polymer families were synthesized and compared in this work. The critical difference in the two polymer series is that one contained pendant groups with aromatic rings, in addition to the oligioethyleneoxy moieties, while the other has no aromatic rings in its structure. Polymers with phenyl group-containing pendant groups exhibited poor water permeability if they possessed fewer than six ethyleneoxy units. Polymers with more than six ethyleneoxy units inserted between the phenyl ring (tail) and the polymeric backbone exhibited reasonable water permeability. Two additional series of polymers with mixed pendant groups were synthesized and the water passing properties of the phosphazenes varied in proportion to the hydrophilic to hydrophobic balance induced by each individual pendant group. A final study of polymers with shorter pendant groups demonstrated the effect of pendant group on water permeability. These studies suggest that the polyphosphazenes may be tailored for specific water passing applications.

ACKNOWLEDGEMENTS

Gracious support of this work by the U.S. Department of Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517 is hereby acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.