212
Views
14
CrossRef citations to date
0
Altmetric
ADSORPTION

Effect of Preparation Conditions on the Property Cu/AC Adsorbents for Phosphine Adsorption

, , , , &
Pages 527-533 | Received 29 Mar 2011, Accepted 10 Aug 2011, Published online: 10 Feb 2012
 

Abstract

Copper-based activated carbon adsorbents (Cu/AC) were prepared and used to investigate the effects of various copper precursors, impregnation solution concentration, and calcination temperature on phosphine (PH3) adsorption removal from yellow phosphorus tail gas. N2 adsorption isotherm and X-ray Diffraction (XRD) were used for characterizing the Cu/AC adsorbents. It can be seen that the Cu(N)/AC adsorbent prepared from the Cu(NO3)2 precursor has higher PH3 breakthrough adsorption capacity than other three adsorbent because the surface copper status of it is mainly CuO. Fresh activated carbon requires an optimal impregnation solution concentration (0.05 mol/L) to reach this optimal PH3 breakthrough adsorption capacity (78.62 mg/g). The result shows that the surface chemical characteristics (Cu content) of activated carbon is more important than the physical ones (specific surface or pore volume) for the PH3 adsorption performance. When the calcination temperature is 350°C, the Cu(N)/AC adsorbent has the biggest PH3 breakthrough adsorbed amount of 112.38 mg/g. The present study confirmed that the Cu/AC adsorbents would be one of the candidates for PH3 adsorption removal from yellow phosphorus tail gas.

ACKNOWLEDGEMENTS

The authors would like to acknowledge financial support from the Key Program of National High Technology Research and Development Program of China (863 Program) (2008AA062602), the Young and Middle-aged Academic and Technical Back-up Personnel Program of Yunnan Province (2007PY01-10), and the Analysis and Measurement Foundation of Kunming University of Science & Technology.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.