551
Views
30
CrossRef citations to date
0
Altmetric
ADSORPTION

Adsorptive Removal of Nitrate and Phosphate from Water by a Purolite Ion Exchange Resin and Hydrous Ferric Oxide Columns in Series

, &
Pages 1785-1792 | Received 22 Aug 2011, Accepted 13 Jan 2012, Published online: 07 Aug 2012
 

Abstract

Elevated concentrations of nitrate and phosphate in surface and ground waters can lead to eutrophication, and nitrate can also cause health hazards to humans. The adsorption process is generally considered to be an efficient technique in removing these ions provided that the adsorbent is highly selective for these ions. Removal of nitrate and phosphate from a synthetic water (50 mg N/L as nitrate, 15 mg P/L as phosphate) and a wastewater (12.9 mg N/L as nitrate, 5.9 mg P/L as phosphate) using a Purolite A500P anion exchange resin and a hydrous ferric oxide (HFO) columns (60 cm height, 2 cm diameter, flow rate 1 m/h) in series containing 1–10% (w/w) of these adsorbents and the remainder anthracite (90–99%) were studied. Data from batch adsorption experiment at various concentrations of adsorbents satisfactorily fitted to Langmuir adsorption isotherm for nitrate and phosphate on Purolite with adsorption maxima of 64 mg N/g and 7 mg P/g and only for phosphate on HFO with adsorption maxima of 14 mg P/g. Both batch and column experiments showed that Purolite selectively removed nitrate and HFO selectively removed phosphate. The Purolite column BTC time was greater for nitrate than for phosphate. At the highest percentage by weight of Purolite almost all nitrate was removed in batch study and up to 1000 min in column study, but it was not able to remove a comparatively high percentage of phosphate. However, when the effluent from the Purolite column was passed through the HFO column almost all phosphate was removed. The two columns when set up in series also removed almost all nitrate and phosphate from the wastewater.

Notes

*Equilibrium time used was 72 h, % of amount added.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.