213
Views
4
CrossRef citations to date
0
Altmetric
FLOTATION

Applying One-Stage Grinding and Flotation to Improving Copper Recovery of a Fine-Grained Cu-Mo Sulphide Ore

, , , &
Pages 1900-1905 | Received 04 Jul 2012, Accepted 24 Nov 2012, Published online: 16 Jul 2013
 

Abstract

This paper introduces the mineralogy of a fine-grained Cu-Mo sulphide ore, and the relationship between grinding fineness and flotation performance. Results show that the grinding fineness is a key factor affecting the recovery of copper and molybdenum. The result of one stage grinding and flotation is much better than that of grinding and flotation by stages, because an over grinding of chalcopyrite caused by regrinding of Cu-Mo bulk concentrate can be avoided. Finally, a simple flowsheet has been developed, that is, one-stage fine grinding of raw ore to 90% −0.074 mm, and a bulk flotation to produce a bulk concentrate by one-stage roughing, two stages of cleaning and one-stage scavenging, followed by three times of Cu-Mo flotation separation. When the feed contains 0.50% Cu and 0.19% Mo, the obtained copper and molybdenum concentrates assay 19.23% Cu and 48.53% Mo with the recoveries of 85.5% and 90.96%, respectively.

ACKNOWLEDGEMENTS

Thanks are given to the financial support of Applied Fundamental Research if Yunnan Provincial Science and Technology Department (No. 2013FZ023).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.