143
Views
1
CrossRef citations to date
0
Altmetric
ADSORPTION

Greenhouse Gas Adsorptivity of Horn-Shaped Carbon Nanotubes over Nitrogen: Equilibrium Study

, , &
Pages 1227-1234 | Received 11 Jun 2013, Accepted 04 Dec 2013, Published online: 16 May 2014
 

Abstract

The synthesis of horn-shaped carbon nanotubes using carbon tetrachloride as carbon source was carried out by solvothermal method at 200°C for 2 h. The scanning and transmission electron microscopic characterization of the obtained product showed the formation of horn-shaped carbon nanotubes with irregular wall structure having inner diameter of ∼105 nm and length of ∼1 µm. The equilibrium gas adsorption properties of horn-shaped carbon nanotubes derived from carbon tetrachloride were successfully investigated for CO2, CH4, and N2 at 288, 303, and 318 K. Horn-shaped carbon nanotubes possess better CO2 adsorption capacity (2.53 mmol/g) with high capacity selectivity (14.7) and equilibrium selectivity (59.1) over N2 at 288 K. The detailed adsorption study with estimation of physical parameters such as Henry's constant and heat of adsorption identifies the horn-shaped carbon nanotubes as a potential adsorbent material in the field of CO2 storage and separation.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lsst.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.