92
Views
3
CrossRef citations to date
0
Altmetric
Adsorption

Potential of Green Nanoemulsions in Removal of Congo Red from Aqueous Solution

, , &
Pages 2568-2573 | Received 30 Jan 2014, Accepted 24 May 2014, Published online: 13 Oct 2014
 

Abstract

In the present study, potential of green nanoemulsions in the removal of Congo red (CR) from aqueous solution was investigated. Nanoemulsions were prepared by low energy emulsification technique using ethyl acetate (EA), Triton-X100, ethylene glycol (EG), and water. Nanoemulsions were characterized for thermodynamic stability, self-nanoemulsification efficiency, droplet size, polydispersity, viscosity, refractive index, and transmittance. Adsorption studies were carried out for contact time of 10, 15, and 20 min. The influence of contact time and EA & Triton-X100/EG concentrations on droplet size, viscosity, and % CR removal was also investigated. It was observed that droplet size, viscosity, and % CR removal were significantly influenced by EA and Triton-X100/EG concentrations. However, contact time had negligible/little impact on % CR removal. Based on the lowest droplet size (14.3 nm), lowest viscosity (11.4 cp), and highest % CR removal efficiency (91.6%), the nanoemulsion F7 containing 5% w/w of EA, 33.3% w/w of Triton-X100, 16.7% w/w of EG, and 45% w/w of water was optimized as the best formulation for the removal of CR from its bulk aqueous solution. These results indicated the potential of green nanoemulsions in the removal of toxic dyes such as CR from its aqueous solution via liquid-liquid adsorption.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.