148
Views
10
CrossRef citations to date
0
Altmetric
Extraction

Solid-phase extraction for simultaneous separation and preconcentration of Fe(III) and Zn(II) traces using three chelatants and Ramelak bark-derived activated carbon as a new bio-sorbent

, &
Pages 824-833 | Received 04 Feb 2016, Accepted 28 Nov 2016, Published online: 19 Jan 2017
 

ABSTRACT

This article introduces a comparative study for the simultaneous separation and preconcentration of Fe(III) and Zn(II) traces in various water samples using three well-known ligands as chelating agents and activated carbon (AC) derived from Ramelak bark as a new bio-sorbent prior to the determination by flame atomic absorption spectrometry. The chelating agents were 4,4’-[(4-Cyano-phenyl)methylene]bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) (CMBM), diethyldithiocarbamate (DDTC) and ammonium pyrrolidine dithiocarbamate (APDC). CMBM was synthesized by a procedure reported in the literature. The newly prepared AC was characterized by Scanning Electron Microscopy (SEM) and Fourier-Transform Infrared (FTIR) Spectrometry. The analytical parameters affecting the separation efficiency of the analytes including pH, shaking time, chelating agent volume (concentration), sorbent mass, sample flow rate and elution conditions were investigated and discussed. Common coexisting ions did not seriously interfere with the separation, showing the good selectivity of the proposed method. The calibration graph was linear in the range of 0.35–70, 0.50–80, 0.9–100, 0.55–75, 0.75–90 and 1.0–120 ng mL−1 for Fe-CMBM, Fe-DDTC, Fe-APDC, Zn-CMBM, Zn-DDTC and Zn-APDC, respectively. Under optimized conditions, the limits of detection were 0.11, 0.13, 0.27, 0.16, 0.22 and 0.30 ng mL−1 for Fe-CMBM, Fe-DDTC, Fe-APDC, Zn-CMBM, Zn-DDTC and Zn-APDC, respectively. The proposed method has been applied to the determination of Fe(III) and Zn(II) in different water samples with satisfactory recovery percentages. The developed method, validated with standard reference materials, was used successfully in determining the concentrations of metal ions in water samples.

Supplemental data

Supplemental data for this article can be accessed on the publisher’s website.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.