146
Views
7
CrossRef citations to date
0
Altmetric
Membrane

Removal of hydrogen sulfide from methane using PEO-segmented copolymer-based multilayer composite membrane

&
Pages 2190-2198 | Received 30 Jun 2016, Accepted 21 Apr 2017, Published online: 10 Jul 2017
 

ABSTRACT

The thermoplastic poly(urethane-urea) (PUU) was synthesized using polyethylene-glycol, 4,4ʹ-methylenediphenyl diisocyanate (MDI), and 1,2-ethandiamine (EDA) as a chain extender. A novel multilayer composite membrane consisting of the synthesized PUU, as a selective layer, a silicon rubber, as an interlayer, and the polyacrylonitrile (PAN) microporous support was prepared for the removal of acid gas. Moreover, the physical properties of the synthesized PEG-based polyurethane were investigated. Based on Differential Scanning Calorimeter (DSC) and ANDFourier Transform Infra-red Spectroscopy (FTIR) analyses, a higher microphase separation of hard and soft segments was observed for PUU. The permeabilities of pure CO2, pure CH4, and a ternary mixture of CH4, CO2, and H2S through the multilayer composite membrane were measured at different temperatures and pressures. The maximum values of selectivity, i.e., 52 and 15 for H2S/CH4 and CO2/CH4, respectively, were found at 25°C and 5 bar. The permeances of H2S and CO2 in the ternary mixture decreased on increasing the feed pressure because of membrane compression. The higher the temperature, the higher was the permeability of the gases due to the more molecular movement of the polymer chains. Therefore, the gas selectivity in the synthesized composite membrane decreased by increasing the temperature. The experiments showed that replacing the pure-gas measurements with the gas mixture measurements can substantially produce more relevant results.

Funding

This work was partially funded by National Iranian Gas Company (Research and Technology directorate).

Supplemental data

Supplemental data for this article can be accessed on the publisher's website.

Additional information

Funding

This work was partially funded by National Iranian Gas Company (Research and Technology directorate).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.