82
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Permeation of Iridium(IV) and Metal Impurity Chlorocomplexes through a Supported Liquid Membrane Designed for Rhodium Separation

Pages 1145-1162 | Published online: 04 Mar 2008
 

ABSTRACT

A supported liquid membrane (SLM) system previously designed for Rh separation has been examined for its capability to reject the metal impurities which are commonly encountered in industrial Rh chloride solutions. Special attention was paid to Ir(IV) chlorocomplexes and their extraction/transport behavior against both conventional solvent extraction and supported liquid membrane systems of Kelex 100. A lab-scale SLM cell with an effective membrane area of 44 cm2 was used to conduct the SLM permeation tests. The SLM was composed of a Gore-Tex polymer substrate impregnated with an organic solution of Kelex 100, tridecanol, and kerosene. The impurities tested [in addition to Ir(IV)] were Ag(I), As(V), Bi(III), Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II), Pd(II), Pt(IV), Se(IV), Te(IV), and Zn(II). These impurities, based on their response against the SLM, were classified into three groups, i.e., those permeated through [Zn(II), Pb(II), Cd(II), Bi(III), Te(IV), and Ir(IV)], those nonpermeated at all [Ni(II), Co(II), As(V), Se(IV), Cu(II), and Fe(III)], and those blocking the membrane [Pt(IV), Pd(II), Ag(I), Pb(II), and Bi(III)]. The SLM was not capable of discriminating between Rh(III) and Ir(IV) transport at the optimum operating conditions. Complementary upstream and downstream processes are required to separate the impurities from the feed and the product solutions, respectively. Overall, this work revealed the great limitations of SLMs as effective and potentially useful separation media for the extraction of metals from industrial-like multicomponent aqueous feed solutions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.