174
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Optimization in a two-stage multi-server service system with customer priorities

, &
Pages 326-337 | Received 28 Feb 2017, Accepted 05 Feb 2018, Published online: 01 Mar 2018
 

Abstract

We consider a two-stage, multi-server queueing network that serves two types of customers, which we refer to as type a and type b. Type a customers require service at both sequential stages and type b customers only require service at the second stage. The first stage has one node and the second stage has multiple nodes. Type a customers possess a higher non-pre-emptive priority than type b customers. Depending on the model application, two goals are explored: the first goal is to allocate type a customers to the second- stage nodes in a manner that minimizes the average blocking delay; the second goal is to optimize the service speed of each server in the second stage so that the average blocking delay experienced by type a customers is minimized. In this paper, we develop an approximation scheme and an iterative algorithm to find stationary policies, which we then apply to the real-world contexts of Emergency Medical Services planning and airline staffing. Numerical examples show that, compared to some typical heuristic schemes (e.g., proportional allocation based on arrival/service capacity), the suggested allocation policies result in type a customers experiencing shorter delays and allow more of them receive service.

Notes

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 277.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.