833
Views
299
CrossRef citations to date
0
Altmetric
Theory and Methods

Adaptive Bayesian Wavelet Shrinkage

, &
Pages 1413-1421 | Received 01 Jan 1996, Published online: 17 Feb 2012
 

Abstract

When fitting wavelet based models, shrinkage of the empirical wavelet coefficients is an effective tool for denoising the data. This article outlines a Bayesian approach to shrinkage, obtained by placing priors on the wavelet coefficients. The prior for each coefficient consists of a mixture of two normal distributions with different standard deviations. The simple and intuitive form of prior allows us to propose automatic choices of prior parameters. These parameters are chosen adaptively according to the resolution level of the coefficients, typically shrinking high resolution (frequency) coefficients more heavily. Assuming a good estimate of the background noise level, we obtain closed form expressions for the posterior means and variances of the unknown wavelet coefficients. The latter may be used to assess uncertainty in the reconstruction. Several examples are used to illustrate the method, and comparisons are made with other shrinkage methods.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.