1,634
Views
46
CrossRef citations to date
0
Altmetric
Theory and Methods

Gradient-Based Kernel Dimension Reduction for Regression

Pages 359-370 | Received 01 Apr 2012, Published online: 19 Mar 2014
 

Abstract

This article proposes a novel approach to linear dimension reduction for regression using nonparametric estimation with positive-definite kernels or reproducing kernel Hilbert spaces (RKHSs). The purpose of the dimension reduction is to find such directions in the explanatory variables that explain the response sufficiently: this is called sufficient dimension reduction. The proposed method is based on an estimator for the gradient of the regression function considered for the feature vectors mapped into RKHSs. It is proved that the method is able to estimate the directions that achieve sufficient dimension reduction. In comparison with other existing methods, the proposed one has wide applicability without strong assumptions on the distributions or the type of variables, and needs only eigendecomposition for estimating the projection matrix. The theoretical analysis shows that the estimator is consistent with certain rate under some conditions. The experimental results demonstrate that the proposed method successfully finds effective directions with efficient computation even for high-dimensional explanatory variables.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.