511
Views
2
CrossRef citations to date
0
Altmetric
Applications and Case Studies

A Methodology for Robust Multiproxy Paleoclimate Reconstructions and Modeling of Temperature Conditional Quantiles

Pages 63-77 | Received 01 Sep 2012, Published online: 19 Mar 2014
 

Abstract

Great strides have been made in the field of reconstructing past temperatures based on models relating temperature to temperature-sensitive paleoclimate proxies. One of the goals of such reconstructions is to assess if current climate is anomalous in a millennial context. These regression-based approaches model the conditional mean of the temperature distribution as a function of paleoclimate proxies (or vice versa). Some of the recent focus in the area has considered methods that help reduce the uncertainty inherent in such statistical paleoclimate reconstructions, with the ultimate goal of improving the confidence that can be attached to such endeavors. A second important scientific focus in the subject area is the area of forward models for proxies, the goal of which is to understand the way paleoclimate proxies are driven by temperature and other environmental variables. One of the primary contributions of this article is novel statistical methodology for (i) quantile regression (QR) with autoregressive residual structure, (ii) estimation of corresponding model parameters, (iii) development of a rigorous framework for specifying uncertainty estimates of quantities of interest, yielding (iv) statistical byproducts that address the two scientific foci discussed above. We show that by using the above statistical methodology, we can demonstrably produce a more robust reconstruction than is possible by using conditional-mean-fitting methods. Our reconstruction shares some of the common features of past reconstructions, but we also gain useful insights. More importantly, we are able to demonstrate a significantly smaller uncertainty than that from previous regression methods. In addition, the QR component allows us to model, in a more complete and flexible way than least squares, the conditional distribution of temperature given proxies. This relationship can be used to inform forward models relating how proxies are driven by temperature.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.