1,328
Views
16
CrossRef citations to date
0
Altmetric
Applications and Case Studies

Quantifying Causal Effects of Road Network Capacity Expansions on Traffic Volume and Density via a Mixed Model Propensity Score Estimator

Pages 1440-1449 | Received 01 Apr 2013, Published online: 01 Oct 2014
 

Abstract

Road network capacity expansions are frequently proposed as solutions to urban traffic congestion but are controversial because it is thought that they can directly “induce” growth in traffic volumes. This article quantifies causal effects of road network capacity expansions on aggregate urban traffic volume and density in U.S. cities using a mixed model propensity score (PS) estimator. The motivation for this approach is that we seek to estimate a dose-response relationship between capacity and volume but suspect confounding from both observed and unobserved characteristics. Analytical results and simulations show that a longitudinal mixed model PS approach can be used to adjust effectively for time-invariant unobserved confounding via random effects (RE). Our empirical results indicate that network capacity expansions can cause substantial increases in aggregate urban traffic volumes such that even major capacity increases can actually lead to little or no reduction in network traffic densities. This result has important implications for optimal urban transportation strategies. Supplementary materials for this article are available online.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.