848
Views
12
CrossRef citations to date
0
Altmetric
Theory and Methods

Pairwise Likelihood Inference for Nested Hidden Markov Chain Models for Multilevel Longitudinal Data

Pages 216-228 | Received 01 Jun 2013, Published online: 05 May 2016
 

Abstract

In the context of multilevel longitudinal data, where sample units are collected in clusters, an important aspect that should be accounted for is the unobserved heterogeneity between sample units and between clusters. For this aim, we propose an approach based on nested hidden (latent) Markov chains, which are associated with every sample unit and with every cluster. The approach allows us to account for the previously mentioned forms of unobserved heterogeneity in a dynamic fashion; it also allows us to account for the correlation that may arise between the responses provided by the units belonging to the same cluster. Under the assumed model, computing the manifest distribution of these response variables is infeasible even with a few units per cluster. Therefore, we make inference on this model through a composite likelihood function based on all the possible pairs of subjects within each cluster. Properties of the composite likelihood estimator are assessed by simulation. The proposed approach is illustrated through an application to a dataset concerning a sample of Italian workers in which a binary response variable for the worker receiving an illness benefit was repeatedly observed. Supplementary materials for this article are available online.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.