1,761
Views
24
CrossRef citations to date
0
Altmetric
Applications and Case Studies

Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach

&
Pages 127-136 | Received 04 Jun 2014, Published online: 03 May 2017
 

ABSTRACT

Electricity load forecasts are an integral part of many decision-making processes in the electricity market. However, most literature on electricity load forecasting concentrates on deterministic forecasts, neglecting possibly important information about uncertainty. A more complete picture of future demand can be obtained by using distributional forecasts, allowing for more efficient decision-making. A predictive density can be fully characterized by tail measures such as quantiles and expectiles. Furthermore, interest often lies in the accurate estimation of tail events rather than in the mean or median. We propose a new methodology to obtain probabilistic forecasts of electricity load that is based on functional data analysis of generalized quantile curves. The core of the methodology is dimension reduction based on functional principal components of tail curves with dependence structure. The approach has several advantages, such as flexible inclusion of explanatory variables like meteorological forecasts and no distributional assumptions. The methodology is applied to load data from a transmission system operator (TSO) and a balancing unit in Germany. Our forecast method is evaluated against other models including the TSO forecast model. It outperforms them in terms of mean absolute percentage error and mean squared error. Supplementary materials for this article are available online.

Supplementary Materials

Simulation Study: A simulation study that evaluates the performance of the proposed methodology. The results are compared to several benchmark methods. (PDF)

Funding

The financial support from the Deutsche Forschungsgemeinschaft via SFB 649 “Ökonomisches Risiko,” Humboldt-Universität zu Berlin is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.