553
Views
3
CrossRef citations to date
0
Altmetric
Theory and Methods

Nonparametric Maximum Likelihood Estimators of Time-Dependent Accuracy Measures for Survival Outcome Under Two-Stage Sampling Designs

, , &
Pages 882-892 | Received 01 Dec 2014, Published online: 25 Jul 2018
 

ABSTRACT

Large prospective cohort studies of rare chronic diseases require thoughtful planning of study designs, especially for biomarker studies when measurements are based on stored tissue or blood specimens. Two-phase designs, including nested case–control and case-cohort sampling designs, provide cost-effective strategies for conducting biomarker evaluation studies.Existing literature for biomarker assessment under two-phase designs largely focuses on simple inverse probability weighting (IPW) estimators. Drawing on recent theoretical development on the maximum likelihood estimators for relative risk parameters in two-phase studies, we propose nonparametric maximum likelihood-based estimators to evaluate the accuracy and predictiveness of a risk prediction biomarker under both types of two-phase designs. In addition, hybrid estimators that combine IPW estimators and maximum likelihood estimation procedure are proposed to improve efficiency and alleviate computational burden. We derive large sample properties of proposed estimators and evaluate their finite sample performance using numerical studies. We illustrate new procedures using a two-phase biomarker study aiming to evaluate the accuracy of a novel biomarker, des-γ-carboxy prothrombin, for early detection of hepatocellular carcinoma. Supplementary materials for this article are available online.

Supplementary Material

Supplementary material includes regularity conditions, proof of asymptotic results of the proposed estimators, and further simulation results.

Additional information

Funding

The work is supported by grants U01-CA86368, P01-CA053996, R01- GM085047, R01-GM079330, and R01-ES016626 awarded by the National Institutes of Health.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.