2,534
Views
39
CrossRef citations to date
0
Altmetric
Theory and Methods

Interpretable Dynamic Treatment Regimes

, , &
Pages 1541-1549 | Received 01 Jun 2016, Published online: 14 Nov 2018
 

ABSTRACT

Precision medicine is currently a topic of great interest in clinical and intervention science.  A key component of precision medicine is that it is evidence-based, that is, data-driven, and consequently there has been tremendous interest in estimation of precision medicine strategies using observational or randomized study data. One way to formalize precision medicine is through a treatment regime, which is a sequence of decision rules, one per stage of clinical intervention, that map up-to-date patient information to a recommended treatment. An optimal treatment regime is defined as maximizing the mean of some cumulative clinical outcome if applied to a population of interest. It is well-known that even under simple generative models an optimal treatment regime can be a highly nonlinear function of patient information. Consequently, a focal point of recent methodological research has been the development of flexible models for estimating optimal treatment regimes. However, in many settings, estimation of an optimal treatment regime is an exploratory analysis intended to generate new hypotheses for subsequent research and not to directly dictate treatment to new patients. In such settings, an estimated treatment regime that is interpretable in a domain context may be of greater value than an unintelligible treatment regime built using “black-box” estimation methods. We propose an estimator of an optimal treatment regime composed of a sequence of decision rules, each expressible as a list of “if-then” statements that can be presented as either a paragraph or as a simple flowchart that is immediately interpretable to domain experts. The discreteness of these lists precludes smooth, that is, gradient-based, methods of estimation and leads to nonstandard asymptotics. Nevertheless, we provide a computationally efficient estimation algorithm, prove consistency of the proposed estimator, and derive rates of convergence. We illustrate the proposed methods using a series of simulation examples and application to data from a sequential clinical trial on bipolar disorder. Supplementary materials for this article are available online.

Additional information

Funding

The authors gratefully acknowledge funding from the National Science Foundation (DMS-1555141, DMS-1557733, DMS-1513579) and the National Institutes of Health (P01 CA142538).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.