1,653
Views
39
CrossRef citations to date
0
Altmetric
Theory and Methods

A Massive Data Framework for M-Estimators with Cubic-Rate

, &
Pages 1698-1709 | Received 10 Jun 2016, Published online: 19 Jun 2018
 

ABSTRACT

The divide and conquer method is a common strategy for handling massive data. In this article, we study the divide and conquer method for cubic-rate estimators under the massive data framework. We develop a general theory for establishing the asymptotic distribution of the aggregated M-estimators using a weighted average with weights depending on the subgroup sample sizes. Under certain condition on the growing rate of the number of subgroups, the resulting aggregated estimators are shown to have faster convergence rate and asymptotic normal distribution, which are more tractable in both computation and inference than the original M-estimators based on pooled data. Our theory applies to a wide class of M-estimators with cube root convergence rate, including the location estimator, maximum score estimator, and value search estimator. Empirical performance via simulations and a real data application also validate our theoretical findings. Supplementary materials for this article are available online.

Supplementary Materials

Additional theoretical results, technical proofs and simulation results are presented in supplementary materials.

Acknowledgments

The authors thank an associate editor and three referees for their thoughtful and constructive comments that help to improve an earlier version of the article.

Additional information

Funding

This work was partly supported by a NIH grant P01 CA142538.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.