4,771
Views
146
CrossRef citations to date
0
Altmetric
Theory and Methods

Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization

, &
Pages 804-819 | Received 01 Dec 2015, Published online: 26 Oct 2018
 

ABSTRACT

Large collections of time series often have aggregation constraints due to product or geographical groupings. The forecasts for the most disaggregated series are usually required to add-up exactly to the forecasts of the aggregated series, a constraint we refer to as “coherence.” Forecast reconciliation is the process of adjusting forecasts to make them coherent.

The reconciliation algorithm proposed by Hyndman et al. (Citation2011) is based on a generalized least squares estimator that requires an estimate of the covariance matrix of the coherency errors (i.e., the errors that arise due to incoherence). We show that this matrix is impossible to estimate in practice due to identifiability conditions.

We propose a new forecast reconciliation approach that incorporates the information from a full covariance matrix of forecast errors in obtaining a set of coherent forecasts. Our approach minimizes the mean squared error of the coherent forecasts across the entire collection of time series under the assumption of unbiasedness. The minimization problem has a closed-form solution. We make this solution scalable by providing a computationally efficient representation.

We evaluate the performance of the proposed method compared to alternative methods using a series of simulation designs which take into account various features of the collected time series. This is followed by an empirical application using Australian domestic tourism data. The results indicate that the proposed method works well with artificial and real data. Supplementary materials for this article are available online.

Supplementary Materials

The online supplementary materials contain the appendices for the article.

Funding

George Athanasopoulos and Rob J Hyndman acknowledge support from the Australian Research Council grant DP1413220.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.