733
Views
0
CrossRef citations to date
0
Altmetric
Theory and Methods

Hierarchical Network Models for Exchangeable Structured Interaction Processes

, &
Pages 2056-2073 | Received 25 Mar 2019, Accepted 09 Feb 2021, Published online: 10 May 2021
 

Abstract

Network data often arises via a series of structured interactions among a population of constituent elements. E-mail exchanges, for example, have a single sender followed by potentially multiple receivers. Scientific articles, on the other hand, may have multiple subject areas and multiple authors. We introduce a statistical model, termed the Pitman-Yor hierarchical vertex components model (PY-HVCM), that is well suited for structured interaction data. The proposed PY-HVCM effectively models complex relational data by partial pooling of local information via a latent, shared population-level distribution. The PY-HCVM is a canonical example of hierarchical vertex components models—a subfamily of models for exchangeable structured interaction-labeled networks, that is, networks invariant to interaction relabeling. Theoretical analysis and supporting simulations provide clear model interpretation, and establish global sparsity and power law degree distribution. A computationally tractable Gibbs sampling algorithm is derived for inferring sparsity and power law properties of complex networks. We demonstrate the model on both the Enron e-mail dataset and an ArXiv dataset, showing goodness of fit of the model via posterior predictive validation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.