1,192
Views
3
CrossRef citations to date
0
Altmetric
Theory and Methods

Estimation of Knots in Linear Spline Models

, &
Pages 639-650 | Received 28 Apr 2020, Accepted 07 Jun 2021, Published online: 09 Aug 2021
 

Abstract

The linear spline model is able to accommodate nonlinear effects while allowing for an easy interpretation. It has significant applications in studying threshold effects and change-points. However, its application in practice has been limited by the lack of both rigorously studied and computationally convenient method for estimating knots. A key difficulty in estimating knots lies in the nondifferentiability. In this article, we study influence functions of regular and asymptotically linear estimators for linear spline models using the semiparametric theory. Based on the theoretical development, we propose a simple semismooth estimating equation approach to circumvent the nondifferentiability issue using modified derivatives, in contrast to the previous smoothing-based methods. Without relying on any smoothing parameters, the proposed method is computationally convenient. To further improve numerical stability, a two-step algorithm taking advantage of the analytic solution available when knots are known is developed to solve the proposed estimating equation. Consistency and asymptotic normality are rigorously derived using the empirical process theory. Simulation studies have shown that the two-step algorithm performs well in terms of both statistical and computational properties and improves over existing methods. Supplementary materials for this article are available online.

Supplementary Materials

The online supplementary materials contain proofs for Lemmas 1-3, Proposition 1, Theorems 1 and 2, the detailed algorithm for the single-knot situation, additional results regarding the gradient descent algorithm, and the code for the proposed method.

Acknowledgments

The author thanks to the anonymous reviewers and associate editor for the constructive inputs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.