658
Views
0
CrossRef citations to date
0
Altmetric
Applications and Case Studies

Modeling Postoperative Mortality in Older Patients by Boosting Discrete-Time Competing Risks Models

, , , , &
Pages 2239-2249 | Received 15 Dec 2021, Accepted 20 Apr 2023, Published online: 21 Jun 2023
 

Abstract

Elderly patients are at a high risk of suffering from postoperative death. Personalized strategies to improve their recovery after intervention are therefore urgently needed. A popular way to analyze postoperative mortality is to develop a prognostic model that incorporates risk factors measured at hospital admission, for example, comorbidities. When building such models, numerous issues must be addressed, including censoring and the presence of competing events (such as discharge from hospital alive). Here we present a novel survival modeling approach to investigate 30-day inpatient mortality following intervention. The proposed method accounts for both grouped event times, for example, measured in 24-hour intervals, and competing events. Conceptually, the method is embedded in the framework of generalized additive models for location, scale, and shape (GAMLSS). Model fitting is performed using a component-wise gradient boosting algorithm, which allows for additional regularization steps via stability selection. We used this new modeling approach to analyze data from the Peri-interventional Outcome Study in the Elderly (POSE), which is a recent cohort study that enrolled 9862 elderly inpatients undergoing intervention under anesthesia. Application of the proposed boosting algorithm yielded six important risk factors (including both clinical variables and interventional characteristics) that either contributed to the hazard of death or to discharge from hospital alive. Supplementary materials for this article are available online.

Acknowledgments

We thank Thomas Prince for proofreading the manuscript.

Additional information

Funding

Support by the German Research Foundation is acknowledged (grants SCHM 2966/2-1, BE 7543/1-1).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.