400
Views
0
CrossRef citations to date
0
Altmetric
Method

Spectral Clustering, Bayesian Spanning Forest, and Forest Process

, ORCID Icon &
Received 04 Aug 2022, Accepted 04 Aug 2023, Published online: 24 Aug 2023
 

Abstract

Spectral clustering views the similarity matrix as a weighted graph, and partitions the data by minimizing a graph-cut loss. Since it minimizes the across-cluster similarity, there is no need to model the distribution within each cluster. As a result, one reduces the chance of model misspecification, which is often a risk in mixture model-based clustering. Nevertheless, compared to the latter, spectral clustering has no direct ways of quantifying the clustering uncertainty (such as the assignment probability), or allowing easy model extensions for complicated data applications. To fill this gap, we propose the Bayesian forest model as a generative graphical model for spectral clustering. This is motivated by our discovery that the posterior connecting matrix in a forest model has almost the same leading eigenvectors, as the ones used by normalized spectral clustering. To induce a distribution for the forest, we develop a “forest process” as a graph extension to the urn process, while we carefully characterize the differences in the partition probability. We derive a simple Markov chain Monte Carlo algorithm for posterior estimation, and demonstrate superior performance compared to existing algorithms. We illustrate several model-based extensions useful for data applications, including high-dimensional and multi-view clustering for images. Supplementary materials for this article are available online.

Supplementary Materials

The supplementary materials include additional details on the model-based extensions, proofs of theorems, numerical experiments and a link to the R source code.

Acknowledgments

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada.

Disclosure Statement

The authors report that there are no competing interests to declare.

Additional information

Funding

Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.