369
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

On the Discrete Poincaré–Friedrichs Inequalities for Nonconforming Approximations of the Sobolev Space H 1

Pages 925-952 | Published online: 16 Aug 2006
 

ABSTRACT

We present a direct proof of the discrete Poincaré–Friedrichs inequalities for a class of nonconforming approximations of the Sobolev space H 1(Ω), indicate optimal values of the constants in these inequalities, and extend the discrete Friedrichs inequality onto domains only bounded in one direction. We consider a polygonal domain Ω in two or three space dimensions and its shape-regular simplicial triangulation. The nonconforming approximations of H 1(Ω) consist of functions from H 1 on each element such that the mean values of their traces on interelement boundaries coincide. The key idea is to extend the proof of the discrete Poincaré–Friedrichs inequalities for piecewise constant functions used in the finite volume method. The results have applications in the analysis of nonconforming numerical methods, such as nonconforming finite element or discontinuous Galerkin methods.

Mathematics Subject Classification:

ACKNOWLEDGMENT

The author would like to thank his Ph.D. advisor Danielle Hilhorst from the University of Paris-Sud and Professor Robert Eymard from the University of Marne-la-Vallée for their valuable advice and hints.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 570.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.