238
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Icariside II Induces Apoptosis of Melanoma Cells Through the Downregulation of Survival Pathways

, , , , , , & show all
Pages 110-117 | Received 29 Jan 2012, Accepted 10 Sep 2012, Published online: 31 Jan 2013
 

Abstract

This study evaluated the antitumor effects of icariside II (IS), isolated from Herba Epimedii, on in vitro and in vivo models of melanoma and determined its mechanism of apoptosis. Mouse (B16) and human (A375, SK-MEL-5) melanoma cell lines were treated with IS at different concentrations (0–100 μM). Cell viability and proliferation was detected by WST-1 assay and with the xCELLigence system, respectively. Apoptosis was measured by the annexin-V/PI flow cytometric assay. Western blot was used to measure cleaved caspase 3, survivin, P-STAT3, P-ERK and P-AKT. B16 and A375 cells were injected subcutaneously into C57BL/6J and BALB/c-nu mice, respectively. After 1 wk, IS solution at (50 mg/kg, 100 mg/kg) was administered by intraperitoneal injection 3 times for a week. Tumor size was measured with an electronic digital caliper. IS inhibited the proliferation of melanoma cells in a dose- and time-dependent manner. Treatment of A375 cells with IS resulted in an increased number of apoptotic cells ranging from 5.6% to 26.3% mirrored by increases in cleaved caspase-3 and a decrease in survivin expression. IS significantly inhibited the activation of the JAK-STAT3 and MAPK pathways but promoted an unsustained activation peak of the PI3K-AKT pathway. IS administration (50 mg/kg) resulted in a 47.5% decreased tumor volume in A375 bearing mice. Furthermore, IS administration (50 mg/kg, 100 mg/kg) resulted in 41% and 49% decreased tumor volume in B16 bearing mice, respectively. IS dramatically inhibited the proliferation of melanoma cells in vivo and in vitro through the regulation of apoptosis. These effects demonstrate the ability of IS to effectively overcome the survival signals of tumor cells, which support further preclinical evaluation of IS in cancer as a new potential chemotherapeutic agent.

ACKNOWLEDGMENTS

Jinfeng Wu and Jinhua Xu contributed equally to this work and should be considered as co-first author. This project was funded by grant from National Basic Science Program of China (2009CB523000) and National Natural Science Foundation of China (81102541).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 633.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.