103
Views
6
CrossRef citations to date
0
Altmetric
Article

Combined Zingiber officinale and Terminalia chebula Induces Apoptosis and Modulates mTOR and hTERT Gene Expressions in MCF-7 Cell Line

&
Pages 1207-1216 | Received 06 Feb 2020, Accepted 23 Jun 2020, Published online: 14 Jul 2020
 

Abstract

In this study, we evaluated the cytotoxicity and apoptotic activity of Zingiber officinale (ZO), Terminalia chebula (TC) alone, and in combination (ZO:TC-1:4). The presence of major bioactive compounds in ZO (6-gingerol and 6-shogaol) and TC (gallic acid, ellagic acid, and chebulinic acid) were evaluated by high performance liquid chromatography. The IC50 values of ZO, TC, and ZOTC (1:4) was estimated to be 88.5, 108.5, and 53.5 μg/mL, respectively. The cell death and cytomorphology changes upon treatment were observed. At these concentrations, ZO, TC, and ZOTC showed reduced mitochondrial membrane potential, increased reactive oxygen species, and apoptotic activities. It was also reported to downregulate mTOR and hTERT gene expression levels which are the primary genes for cell proliferation and growth. This first report on ZOTC combination has the potential to develop as a therapeutic agent for breast cancer.

Acknowledgments

Authors acknowledge Vellore Institute of Technology (VIT) management for providing necessary facilities and financial support by SEED grant to carry out this work.

Disclosure statement

No potential conflict of interest was reported bu the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 633.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.