121
Views
1
CrossRef citations to date
0
Altmetric
Article

Osthole Increases the Sensitivity of Liver Cancer to Sorafenib by Inhibiting Cholesterol Metabolism

, , , , & ORCID Icon
Pages 3640-3650 | Received 15 Oct 2021, Accepted 03 Jun 2022, Published online: 15 Jun 2022
 

Abstract

Osthole is a natural product that has an inhibitory effect on liver cancer, but its effect on the sensitivity of liver cancer to sorafenib is poorly understood. Here, we investigated the effect of osthole and possible sensitization mechanisms. Our results showed that the combination of 2.5 μM sorafenib and 10 μM osthole had significantly synergistic inhibitory effects on proliferation, colony formation, and migration of HCCLM3, sorafenib-resistant HCCLM3 (HCCLM3-SR), and SK-Hep-1 cells. After treatment of HCCLM3 cells-inoculated subcutaneous xenotransplanted tumor mice with 100 mg/kg osthole, 70 mg/kg sorafenib or their combination for 24 day, the tumor volume, tumor weight, and tumor weight coefficient were significantly lower in the osthole + sorafenib group than in the sorafenib group. Compared with the control group, the total cholesterol and low density lipoprotein-cholesterol contents in serum and tumor tissue were significantly decreased in the osthole or osthole + sorafenib groups, the sterol regulatory element binding protein (SREBP)-2c, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and low-density lipoprotein receptor (LDLR) protein expressions in tumor tissue were significantly downregulated as well. In conclusion, osthole can increase the sensitivity of liver cancer to sorafenib, and the mechanism is related to the downregulations of SREBP-2c, HMGCR, and LDLR protein expressions and subsequent inhibition of cholesterol metabolism.

Conflicts of Interest

The authors report no conflicts of interest.

Data Availability

Data will be made available on reasonable request.

Additional information

Funding

This study was funded by the Science & Technology Project of Suzhou City for Medical Health (KJXW2020039) and Research Program of Gusu School of Nanjing Medical University (GSKY20210205, GSKY20220526), China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 633.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.