513
Views
187
CrossRef citations to date
0
Altmetric
Original Articles

Double dissociation without modularity: Evidence from connectionist neuropsychology

Pages 291-321 | Accepted 01 Aug 1994, Published online: 04 Jan 2008
 

Abstract

Many theorists assume that the cognitive system is composed of a collection of encapsulated processing components or modules, each dedicated to performing a particular cognitive function. On this view, selective impairments of cognitive tasks following brain damage, as evidenced by double dissociations, are naturally interpreted in terms of the loss of particular processing components. By contrast, the current investigation examines in detail a double dissociation between concrete and abstract word reading after damage to a connectionist network that pronounces words via meaning and yet has no separable components (Plaut & Shallice, 1993). The functional specialization in the network that gives rise to the double dissociation is not transparently related to the network's structure, as modular theories assume. Furthermore, a consideration of the distribution of effects across quantitatively equivalent individual lesions in the network raises specific concerns about the interpretation of single-case studies. The findings underscore the necessity of relating neuropsychological data to cognitive theories in the context of specific computational assumptions about how the cognitive system operates normally and after damage.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.